Understanding Binder Blending and Diffusion in RAP Mixes

Chris Campbell

2020 Asphalt Technical Symposium
Reclaimed Asphalt Pavement (RAP) Basics

100% recyclable
Environmental & economic incentives
Average RAP content in new mix increased from 15% to 20% between 2009 and 2018 (NAPA)
Incorporating RAP in new mix requires caution
 • Manage stiffness of aged binder in RAP
 • Ensure proper aggregate gradation and effective binder content
 • Achieve proper cohesion between virgin and RAP binders, and adhesion to aggregate

How do we properly account for aged binder?
Understanding RAP-Virgin Binder Blending

Step I: Understand blending between RAP and virgin binders
• Evaluate binder diffusion using change in viscosity

Step II: Demonstrate binder blending in mixtures
• Use findings to validate diffusion in mixtures
• Determine average diffusion distance / binder thickness

Step III: Understand impact of binder blending in practice
• Plant Trials / Field Validation
RAP Binder, a “black rock” or “binder blend component”?

Extent of blending is critically important for mixture rheological & failure properties
What is Diffusion?

- Migration of material in the direction of concentration gradient
- Moving from two separate liquids to one homogeneous blend
Step I: RAP-Virgin Binder Diffusion in Experiment

- **Diffusion in Mix**
- **Test in Rheometer**
- **Results**

Results corrected for effects of oxidation & evaporation

Graph showing viscosity (η^*, Pa.s) vs. diffusion time (s) for RAP, 50/50 Blend, and Virgin binders.
Diffusion is Faster at Higher Temperature

- Faster Brownian motion at higher temperature increases diffusion rate
- Log of diffusion coefficient increase linearly with temperature

Dependence of Diffusion Coefficient On T

![Graph showing the dependence of diffusion coefficient on temperature](chart.png)

Diffusion at Varying Temperature

- **80 °C**
- **100 °C**
- **120 °C**

Homogenous Blend

Blending by Diffusion
Key Learnings during Step 1

Binders behave like liquids & blend by diffusion

Diffusion rate increases with temperature
Binder Blending in Mix is More Complex

Film thickness & time at temperature define blending in the mix
- Distribution of thicknesses exists
- Proper binder contact may not be reached by mixing

Understanding effective binder thickness in mix is essential
Step II: Evaluating Diffusion in Mix

Conditioning under N$_2$ atmosphere at three temperatures (90, 120, 150 °C)
DSR testing in torsion, 5-10 repeats per sample
Binder Diffusion Model Tracks Mix Property Evolution

Diffusion distance = 800µm
Simulating Diffusion Rate at Realistic Conditions

Diffusion coefficient decreases with mix cooling

Winter paving conditions?
Key Learnings during Step 2

Binder film thickness & time at temperature are critical parameters

Diffusion may not be completed during mix production
 • Effective binder content may be lower than expected

Silo storage at higher temperature can assist diffusion
Hypotheses for extended silo storage:
• Heat & time helps blending between virgin & RAP binders in plant HMA
• Improves cohesiveness of final blend & its performance

Promoted by silo storage

Lower temperatures/shorter contact time

Higher temperatures/longer contact time

Less-uniform binder film
Lower effective binder content

Homogenous binder film
Higher effective binder content

Step III: Plant Trail / Field Validation
Asphalt Plants & Samples

- Two HMA plants in Ontario, Canada, participated
- Mix samples collected at 0, 1, 4, 8, 12 hours of storage
 - 24-hour samples were also collected at Plant 2

Plant Operating Conditions & Mix Properties

<table>
<thead>
<tr>
<th>Plant</th>
<th>Plant 1</th>
<th>Plant 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Course</td>
<td>Surface (HL-3)</td>
<td>Base (HL-8)</td>
</tr>
<tr>
<td>Production Temperature (°C)</td>
<td>160</td>
<td>150-170</td>
</tr>
<tr>
<td>Silo Temperature (°C)</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Silo Status</td>
<td>Off-loading</td>
<td>Off-loading</td>
</tr>
<tr>
<td>Production Rate (tons/h)</td>
<td>178</td>
<td>180</td>
</tr>
<tr>
<td>Virgin Binder</td>
<td>PG 58-28</td>
<td>PG 52-34</td>
</tr>
<tr>
<td>AC Content (%)</td>
<td>5.0</td>
<td>4.7</td>
</tr>
<tr>
<td>RAP content (%)</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>
Mix Modulus Evolves During Silo Storage

- Properties of mixes change with storage time counterintuitively, despite binder aging & absorption
Binder Aging During Silo Storage not Significant*

Low Temperature PG, °C

15% RAP 20% RAP 30% RAP 40% RAP

Virgin (tank) Recovered (0h) Recovered (12h) Recovered (24h) Recovered (RAP)

*PG 58-28 + Softener to PG 52-34
Rutting Depth Reduced with Storage Time

Aging, absorption or diffusion?
Fatigue Performance Improved with Storage Time

- Fatigue performance improves
- VMA slightly reduces & VFA slightly increases with storage time
Key Learnings during Step III – Field Validation

Binder & mix properties evolve during silo storage

Binder diffusion is dominant factor in evolution of mix properties within 12 Hrs.
 • Fatigue & rutting both improve as the binder film homogenizes

Caution must be exercised on binder chemistry
Binder softeners may increase binder aging during silo storage

RAP mixes evolve over time due to on-going RAP-virgin binder diffusion
Is RAP binder “a black rock” or “a binder blend component”?

…It depends, time & heat helps.

Thank you for your time!